11 research outputs found

    Making, probing and understanding Bose-Einstein condensates

    Full text link
    Contribution to the proceedings of the 1998 Enrico Fermi summer school on Bose-Einstein condensation in Varenna, Italy.Comment: Long review paper with ~90 pages, ~20 figures. 2 GIF figures in separate files (4/5/99 fixed figure

    Atomic wave packet dynamics in finite time-dependent optical lattices

    Full text link
    Atomic wave packets in optical lattices which are both spatially finite and time-dependent exhibit many striking similarities with light pulses in photonic crystals. We analytically characterize the transmission properties of such a potential geometry for an ideal gas in terms of a position-dependent band structure. In particular, we find that at specific energies, wave packets at the center of the finite lattice may be enclosed by pairs of band gaps. These act as mirrors between which the atomic wave packet is reflected, thereby effectively yielding a matter wave cavity. We show that long trapping times may be obtained in such a resonator and investigate the collapse and revival dynamics of the atomic wave packet by numerical evaluation of the Schr\"odinger equation

    Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates

    Full text link
    Squeezed states, a special kind of entangled states, are known as a useful resource for quantum metrology. In interferometric sensors they allow to overcome the "classical" projection noise limit stemming from the independent nature of the individual photons or atoms within the interferometer. Motivated by the potential impact on metrology as wells as by fundamental questions in the context of entanglement, a lot of theoretical and experimental effort has been made to study squeezed states. The first squeezed states useful for quantum enhanced metrology have been proposed and generated in quantum optics, where the squeezed variables are the coherences of the light field. In this tutorial we focus on spin squeezing in atomic systems. We give an introduction to its concepts and discuss its generation in Bose-Einstein condensates. We discuss in detail the experimental requirements necessary for the generation and direct detection of coherent spin squeezing. Two exemplary experiments demonstrating adiabatically prepared spin squeezing based on motional degrees of freedom and diabatically realized spin squeezing based on internal hyperfine degrees of freedom are discussed.Comment: Phd tutorial, 23 pages, 17 figure

    Calorimetry of Bose-Einstein condensates

    Full text link
    We outline a practical scheme for measuring the thermodynamic properties of a Bose-Einstein condensate as a function of internal energy. We propose using Bragg scattering and controlled trap manipulations to impart a precise amount of energy to a near zero temperature condensate. After thermalisation the temperature can be measured using standard techniques to determine the state equation T(U,N,ω)T(U,N,\omega). Our analysis accounts for interaction effects and the excitation of constants of motion which restrict the energy available for thermalisation.Comment: 6 pages, 1 figure. Updated to published versio

    Extracting density-density correlations from in situ images of atomic quantum gases

    Full text link
    We present a complete recipe to extract the density-density correlations and the static structure factor of a two-dimensional (2D) atomic quantum gas from in situ imaging. Using images of non-interacting thermal gases, we characterize and remove the systematic contributions of imaging aberrations to the measured density-density correlations of atomic samples. We determine the static structure factor and report results on weakly interacting 2D Bose gases, as well as strongly interacting gases in a 2D optical lattice. In the strongly interacting regime, we observe a strong suppression of the static structure factor at long wavelengths.Comment: 15 pages, 5 figure

    Versatile transporter apparatus for experiments with optically trapped Bose-Einstein condensates

    Full text link
    We describe a versatile and simple scheme for producing magnetically and optically-trapped Rb-87 Bose-Einstein condensates, based on a moving-coil transporter apparatus. The apparatus features a TOP trap that incorporates the movable quadrupole coils used for magneto-optical trapping and long-distance magnetic transport of atomic clouds. As a stand-alone device, this trap allows for the stable production of condensates containing up to one million atoms. In combination with an optical dipole trap, the TOP trap acts as a funnel for efficient loading, after which the quadrupole coils can be retracted, thereby maximizing optical access. The robustness of this scheme is illustrated by realizing the superfluid-to-Mott insulator transition in a three-dimensional optical lattice

    Free-fall expansion of finite-temperature Bose-Einstein condensed gas in the non Thomas-Fermi regime

    Full text link
    We report on our study of the free-fall expansion of a finite-temperature Bose-Einstein condensed cloud of 87Rb. The experiments are performed with a variable total number of atoms while keeping constant the number of atoms in the condensate. The results provide evidence that the BEC dynamics depends on the interaction with thermal fraction. In particular, they provide experimental evidence that thermal cloud compresses the condensate.Comment: 8 pages, 4 figure

    One-particle dynamical correlations in the one-dimensional Bose gas

    Full text link
    The momentum- and frequency-dependent one-body correlation function of the one-dimensional interacting Bose gas (Lieb-Liniger model) in the repulsive regime is studied using the Algebraic Bethe Ansatz and numerics. We first provide a determinant representation for the field form factor which is well-adapted to numerical evaluation. The correlation function is then reconstructed to high accuracy for systems with finite but large numbers of particles, for a wide range of values of the interaction parameter. Our results are extensively discussed, in particular their specialization to the static case.Comment: 19 Pages, 7 figure

    Dynamics of the attractive 1D Bose gas: analytical treatment from integrability

    Full text link
    The physics of the attractive one-dimensional Bose gas (Lieb-Liniger model) is investigated with techniques based on the integrability of the system. Combining a knowledge of particle quasi-momenta to exponential precision in the system size with determinant representations of matrix elements of local operators coming from the Algebraic Bethe Ansatz, we obtain rather general analytical results for the zero-temperature dynamical correlation functions of the density and field operators. Our results thus provide quantitative predictions for possible future experiments in atomic gases or optical waveguides.Comment: 26 pages, 5 figure

    Physics with Coherent Matter Waves

    Full text link
    This review discusses progress in the new field of coherent matter waves, in particular with respect to Bose-Einstein condensates. We give a short introduction to Bose-Einstein condensation and the theoretical description of the condensate wavefunction. We concentrate on the coherence properties of this new type of matter wave as a basis for fundamental physics and applications. The main part of this review treats various measurements and concepts in the physics with coherent matter waves. In particular we present phase manipulation methods, atom lasers, nonlinear atom optics, optical elements, interferometry and physics in optical lattices. We give an overview of the state of the art in the respective fields and discuss achievements and challenges for the future
    corecore